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NUMERICAL ANALYSIS IN FRACTURE MECHANICS

A. S. Kobayashi

Department of Mechanical Engineering, University of Washington
Seattle, Washington, USA 98195

ABSTRACT

Recent developments 1n four numerical techniques fn structural mechanics,
which are used to extract fracture parameters for 11near elastic, nonlfnear
and dynamic fracture mechanics, are reviewed. Primary emphasis is placed on
the finite element methods for determining two- and three-dimensional (2-D and
3-D) stress intensity factors in l1inear elastic fracture mechanics. Crack
opening displacements (COD) and J-integrals for 2-D, stable crack growth,
ductile fracture, and use of elastic finfte element method fn 1ts generation
mode for obtaining dynamic elastic fracture parameters are discussed. The
second topic is the finite difference method for analyzing the elasto-dynamic
and elastic-plastic dynamic states in fracturing 2- and 3-D probiems. The use
of a super finite difference code to study dynamfc ductile fracture using the
void growth and coalescence model {s discussed. The third topic is the
boundary element method which has evolved into a practical tool for numerical
analysts in 3-D 11near elastic fracture mechanics. The final topic is the
updated alternating technique, which was merged with a 3-D finite element code
and together with a break-through in 1ts analytical formulation, has become a
cost-effective numerical technique 1n solving part and complete elliptical
crack problems 1n 3-D 1inear elastic fracture mechanics. Comparfsons between
the J-fntegral of a 3-point bend specimen, the stress intensity factor for a
surface flaw specimen and the dynamic stress intensity factor of a fracturing
dynamic tear test specimen obtained by various investigators are made. ¢--

INTRODUCTION

Successful applications of 1inear elastic fracture mechanics (LEFM) 1n
; numerous postmortem analyses of failures in aerospace structures of the early
] 60's and 1ts expanded role in design synthesifs in the 70's required precise
= - knowledge of the stress intensity factors associated with cracks. Such stress
- intensity factors of two-dimensional (2-D) and three-dimensional (3-D) cracks,
which are subjected to complex 1oading conditions can only be obtained through
numerical techniques. As a result, numerical analysis of fracture mechanics
problems became the most active branche of structural mechanics in the 1970's
[11. One of the first numerical solutfons in fracture problems, however, is
the finite difference elastic-plastic result of Jacobs in 1950 [2] which was
followed by others in the 1960's [3 - 5]. Swedlow et al [6], on the other
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hand, used finite element method to study a similar problem. In essence,
these numerical results on the elasto~plastic states in cracked plates were
ahead of their time since no plausible ductile fracture criterion was
available in the early 1960's.

During this period of soul searching, other specialized numerical tech-
niques, which were specially designed to compute mode 1 (opening mode) SIF in
2-D crack problems, emerged. Such techniques include extensive studifes using
the boundary collocatfon method [7]), series expansion of a complex mapping
function [8] and the method of Laurent series expansion [9]. The numerical
solutions, which were generated by these special techniques, are sti1l valid
today and are 1isted in stress intensity factor handbooks and are 11berally
quoted in 11terature as well. These techniques, however, fafled to generate
subsequent supporters and thus will not be discussed in this paper.

In contrast, the overwhelming popularity of finite element method to-
gether with the growing acceptance of 1inear elastic fracture mechanics 1n
structural mechanics in the late 1960's provided the impetus for an orderly
development in the use of finite element method for determining stress inten-
sity factors for 2-D 1inear elastic fracture mechanics [10). The explosive
developments in finite element method approaches to 1inear elastic fracture
mechanics and also to nonlinear as well as dynamic fracture mechanics of the
1970's are documented in several review papers and special conference pro-
ceedings [1, 11 - 16]1. Limited reviews of available 1inear elastic fracture
lElechanigs computer software for fracture mechanics are given in References

17, 181].

Review papers covering the other three topics of finfte difference meth-
od, boundary element method and alternating technique are few and scarce. The
boundary element method, however, has attracted a large core of users and its
applications to fracture mechanics have been presented at numerous confer-
ences.

The purpose of this paper is to review the above four numerical tech-
niques 1n fracture mechanics, with particular emphasis on development of
finite element method following the period covered in Reference [l].

FINITE BLEMENT METHOD

The above mentioned popularity in the use of finite element method in
every aspect of fracture mechanics has resulted in technical papers too
numerous to be included in this review. Thorough reviews on the applications
of finfte element techniques to 2-D static and quasi-static problems in
fracture mechanics through the 1970's have appeared in References [1l, 11 -
15). The historical and important developments of this era will not be
repeated as this paper will concentrate on the 3-D static and 2-D nonlinear
and dynamic analyses which emerged during and after this period.

A. 3-D Static LEFM Singularity Element
Although 3-D finite element method codes are available commercially, the
mode I stress intensity factor for a seemingly simple surface flaw in a unti-

axial tension plate requires ifnordinate amount of computer time. The densely
packed 3-D constant strain quadrilaterials along the curved crack front [19]

.......




for proper modeling of the 1/{T stress singularity resuits in an f{nefficfent
use of computer time. Although crack opening displacements (COD) was used to
improve the accuracy of mode I stress intensity factor, K., the accuracy of
such brute force computation remains in doubt. The 3-D c£unterpart (201 of
the virtual crack extension method [21] attempted to increase, by computing
the local strain energy change for small crack tip displacements in
conventional displacement elements, the solution accuracy without excessive
number of finite elements.

a. Singularity Element

Computational efficiency can also be improved by incorporating the 1/Yr
strain singularity in the displacement elements. Raju and Newman [22] used
such singularity element and reduced the effect of interelement displacement
discontinuity by surrounding the crack tip with two layers of "square-root®
elements. A series of nodal forces adjacent to the crack tip was then used to
compute K.. The multitude of 3-D problems analyzed by this procedure include
the surfa£e flaw problems [23] 1n pressurized cylinders.

b. Collapsed Quarter-Point Isoparametric Element

The popularity [1] of Barsoum's collapsed quarter-point i{soparametric
element [24] 1s due to its simplicity in execution which does not require
special subroutines to available 3-D finite element method codes. These
elements have the correct 1//7 singularity and together with proper stress
intensity factor extraction procedure, will yfeld stress intensity factor of
sufficient accuracy along the crack front. While many use the crack opening
displacement procedures or the crack-tip stress formula to compute the stress
intensity factor in 3-D problems, few procedures are developed specifically
for 3-D applications. In the following, two such procedures are described.

Ingraffea [26] has shown that for collapsed 20-node isoparametric ele-
ments surrounding the crack front of Figure 1, the three modes of stress

intensity factors can be written in terms of the mapped curvilinear coordin-
ates of £, n and  as
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where E and v are the modulus of elasticity and Poisson's ratio, respective-
ly. The three stress intensity factors at n distance along the crack front can
be computed by the crack surface displacements of u, v and w on the collapsed
element face of £ = =1. In terms of the physical distance along the 2
coordinate

n=-(21/L2+1) (4)
where L., is the element length along the crack front as shown in Figure 1.
The quagratic variation in displacement field in the original 20-node element
also results in a quadratfc variation in stress intensity factor along each
crack front element.

The accuracy of the stress intensity factor extraction procedure is de-
monstrated by analyzing the embedded elliptical crack problem solved analy-
tically by Green and Sneddon [27]. Because of symmetry, one-eighth of an
elliptical crack in a cube composed of 23 elements and 141 nodes was analyzed
using SAP IV (28]. The maximum errors in the numerical results, when compared
against the theoretical results [27], were 5% and 7% for a circular crack and
an elliptical crack with an aspect ratfo of 1.5, respectively. At the tip of
the minor axis where the SIF is maximum in the elliptical crack, the error was
”.

¢. Finfte Element Hybr{d Method

Since a review on the use of finite element hybrid method 1in fracture
mechanics appeared in Reference [1], substantial progress has been made in
improving its computational efficiency. Hybrid formulation is now restricted
to finite elements surrounding the crack front with the crack-tip singularity
being preserved through assumed 1//r stress or /r displacement field. Compu-
tational efficiency is achieved by the general purpose finite element code
which models the bulk of the boundary value problem. The effect of inter-ele-
ment discontinuity between the singular and conventional elements is minimiz-
ed through the hybrid formulation. For 2-D problems, the hybrid method can be
formulated such that one element, which has the assumed 1//r singularity and
also an assumed compatible boundary displacements, completely encompasses the

-5-
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crack tip [29]. For 3-D problems, the crack front becomes one of the boundar-
fes of the saveral hybrid elements which surround the crack tip. The assumed
stress hybrid method {s based on an assumed equilibriating stress field, which
contains the proper crack-tip singularity, and on independently assumed bound-

~ary displacements [30]. In terms of the local coordinates of n, z and t, the

singular stress and corresponding displacements fields are represented as
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where r and 6 are the local polar coordinates in the plane normal to the
crack front. While 2-D finite element method codes can incorporate higher
order terms in r, such as the constant, /r,» r ... terms [31), corresponding
series forms of equations (3) and (4) are not avatilable. The assumed stress
in the crack tip hybrid element is thus represented as

=1 P (1//F.8) Ky + E P (xy,2)8 (7
n

%37 n Sim ijn

wvhere the first tem of the above 1s equation (4) and the second tem is a
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regular polynomial of x» y and z. For a traction free crack, this second term
must satisfy the homogeneous equilibrium equations and the traction free
boundary conditions on the crack surface. The assumed element boundary
displacements contain equation (7) for all element boundaries which intersect
with the crack front and satisfy inter-element compatibility. When these
hybrid elements are merged fnto a general purpose 3-D code, equation (7) will
introduce as unknowns, the three stress intensity factors of K (m= 1,2 or 3)
ifn addition to the unknown generalized nodal dfsplacement ofg as

r 9
Ker Kes] |9 Q
T 0
Ers Ess L(m 1=

L -

(8)
9 and Km are thus obtained by solving equation (8).

Pian and Moriya [32] used a twelve node, assumed stress hybrid, half
element, as shown in Fioure 2, to determine the distribution of stress

8-NODE BASIC 12-NODE BASIC 16-NODE BASIC
ELEMENTS ELEMENTS ELEMENTS

T 70 L

12-NODE HALF 20-NODE HALF 26-NODE HALF

ELEMENT ELEMENT ELEMENT
36-NODE 46-NODE

lPERELEIENT SUPERELEMENT SUPERELEMENT

Fig. (2) Three-Dimensional Hybrid Elements
intensity factor along a semi-circular surface crack in a tension specimen.
Because of four way symmetry, only one quadrant of the spccimen was analyzed

with 284 nodes and 852 degrees of freedom. The numerical results, when
compared with Smith's results [33] obtained by the alternating technique, were
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within 12X at the free surface and coincided at the maximum crack depth.

The assumed displacement hybrid method is based on an assumed displace-
ment field, which includes equation (6) with K, and independently assumed
element boundary displacements and boundary tra®tions. The general format of
the final element equation is identical to equation (8) where K 1s treated
also as three unknowns along the the crack front.

Atluri and Katherisean [34] used static condensation to produce a 20 node
quadratic isoparametric super-element, as shown in Figure 3, based on the

. 4

Fig. (3) Super Singular Element

assumed displacement hybrid method. Using this super-element in a general 3-D
finite element code, they analyzed the surface flaw problem with 280 finite
elements and 4815 degrees of freedom. The results are discussed in the last
section entitled "Benchmark Solutions" of this paper.

B. 2-D Nonlinear Singularity Element

Since the early use [6] of constant strain elements for elastic-plastic
finite element method analysis of 2-D fracture problems, this simple element
is sti11 used today with success, primarily due to the moderate or lack of
stress singularity at the plastically yielded crack tip. Kanninen et al [35]
used such finite element method code in both {ts generation and application
modes to study stable crack growth and instabi1ity of A533-B steel and 2219-
T87 aluminum, center cracked and compact specimens. Loadline displacement and
crack length measurements were fnput into generation-mode calculations and the
applied 1oad among others were output for evaluation. Figure 4 shows the
computed and measured applied load versus loadline displacement relation of
the steel compact specimen. Other uses of the conventional element include
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Fig. (4) Load-displacement Curve for A533B Steel CT Specimens

the updated Lagrangian finfte-deformation, finite-element analysis by
McMeeking and Parks [36] who studfed the influence of crack-tip blunting on
the J-based characterization of the crack tip region.

For a material with a strain hardening index of n, the strain field of

the dominant singularity at the crack tip under deformation theory of plasti-
city 1s [37, 38]

_ gg M/ (n*1) _
g n/(n+1)
o, EJ -
g;: = —=—(=) €:.(8,n)
ij E*,2 gt
Uor (10)

where J 1s the J-integral as per Rice [39], 31,1 and 51.1 are functions of 9and
n, and %o is the yield stress.
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Early uses of the above singluar stress and strain fields include that of
Hil1ton [40] who used deformation theory of plasticity to study ductile crack
initiation under monotonically increasing 1oad. Shih [40), on the other hand,
constructed a circular crack tip element with the dominant stress and strain
singularities and studied the changes in elastic-plastic boundaries with
varfations in n values under small scale yielding. Atturi et al [42] incorp-
orated the above stress and strain singularities into the hybrid-displacement

—&— MESH AND NODES
BEFORE TRANSLATION

---0— MESH AND NODES
AFTER TRANSLATION

Fig. (5) Translation of Singular Element

finite elements surrounding the crack tip. The virtual work equatfon for an
incremental crack growth, Aa, as shown in Figure 5, was used to simulate crack
closure and opening under a cyclic loading condition with a single overload as
shown in Figure 6. The penalty function and superposititon method used by
Yagawa et al [43] is similar in formulation where the penalty coefficients are
stiffness coefficients which optimize the potential function under nonlinear
constraints.

For an 1deally plastic material, n = » {n equations(9) and (10) yield

= g, 8nd €;, with an 1/r singularity. Barsoum [44]) showed that the same
c'I:l‘ﬂmgﬁ'lar qu“‘ter-pomt element [24] of elastic analysis will possess the 1/r
strain singularity when the condensed crack tip nodes are allowed to slide.
Shih et a1 [45] used this quarter point element to model crack tip blunting
and growth. As shown in Figure 7, crack-tip blunting {s modeled by separating
the condensed crack tip nodes and crack extension 1s modeled by sequential
shifting of the crack tip node. The crack tip opening displacement (CTOA) and
crack tip displacement can be determined directly from Figure 7(c).

-10-
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C. 3-D Non-11near Singularity Element

The singularity element used in 3-D elastic-plastic analysis of cracks
apparently is limited to Barsoum's triangular quarter-point element. Although
this element contains only a 1/r singularity, Benzley [46] showed heuristical-
1y that when used with a stress-strain relation governed by a power hardening
law, this element provided the correct singular states of strain and stress
interior of the element. delLorenzi [47] used 556 of such 20-noded {so-
parametric elements in an 8300 degree-of-freedom system to study the elastic-
plastic behavior of a surface flaw in the beltline region of a pressurized
reactor vessel. The semi-elliptical crack front was surrounded with triangu-
lar quarter-point elements and a Ramberg-Osgood power hardening law for
stress-strain relation was used. COD at the symmetry plane, as shown 1in
Figure 8, demonstrated the need for a 3-D elastic-plastic analysis since the
plane strain (2-D) approximation clearly overestimated the severity of the
flaw.

MILS
5

PLANE STRAIN

3-D ELASTIC-PLASTIC

CRACK OPENING DISPLACEMENT,
o

==~ ——=%_"3-D ELASTIC
1 4 '

INTERNAL PRESSURE, psi

Fig. (8) COD of a Surface Flaw
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D. 2-D Dynamic Singularity Element

;‘! Dynamic fracture analysis has also been conducted successfully with
3 conventional elements during the past five years. Such analysis include the
extensive code verifications by Kobayashi et al (48, 49] and the recent work
by Jung et al [50]. Accuracy of such simplified finite element method codes
can be improved by using a proper crack node release mechanism which was the
subject of considerable debate in the late 1970's [51 ~ 53]. This writer's
experiences, however, indicate that the simple node release mechanism of 1in-
early decreasing crack-tip nodal force ytield dynamic stress intensity factor
[ which are in good agreement with those obtained by photoelasticity [54].
== Yagawa et al [55], on the otherhand, represented the crack surface traction,
- acting on the extending crack suface, as a Lagrange multiplier, and optimized
the dissipated surface energy during crack extensfon.

earlier by Anderson et al [56] and Aoki et al [57), the most successful use of
such element 1s by Atluri et al who incorporated the 1//r singularity in the
displacement hybrid crack tip element [58, 59]. ~rfigure 9 shows the Atluri's

ng TYPE A : MOVING SINGULAR ELEMENT
) TYPE B : DISTORTING REGULAR ELEMENT
TYPE C : NON-DISTORTING REGULAR ELEMENT

;‘ While singularity elements in dynamic finite element method was used
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. singular element, which moves with the crack tip and retains {ts shape, and
F' the continually distorting regular elements surrounding the crack tip.

Periodic mesh readjustment is necessary with crack extension when this
procedure {s used. Similar approach without the distorting regular elements
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was used by Gunther et al [60). Figure 10 shows good agreement between the
numerically generated dynamic stress intenstty factor by Atlurf et al and the
theoretical solutfion by Broberg [61].

— BROBERG  To/W=0.0 a— S—
« ATLURIETAL Z,/W=0.2
v=02C, L
L/W=10
AZ/W =0.005 | l
1S
FINITE ELEMENT MESH
AT I, /W=0.2
2
I%I.O Riy
€
3 L) + 4
Zost
0 A A 1
02 03 04 05
/W

Fig. (10) Dynamic Stress Intensity Factor of Broberg Crack

Literature is void with 3-D dynamic finfite element analysis, due in part
to the enormity in computational requirements, but also due to the lack of
definitive experimental observations on 3-D dynamic crack extensfon. Such
dynamic crack extension history 1s necessary to execute a dynamic finite
element code in 1ts generation mode. 3-D dynamic analysis by the propagation
mode, on the otherhand, requires apriori a 3-D dynamic crack propagation law
which is equally missing at this time.

FINITE DIFFERENCE METHOD

As mentioned in the Introduction, finite difference method predates the
now popular finite element codes in its application to fracture problems.
Subsequent development of the finfte difference codes were taken over by weap-
on researchers and re-emerged as vastly superifor general purpose codes which

-14-
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could solve 3-D problems ranging from dynamic plasticity to gas dynamics. For
example, the HEMP 3-D code [62] is an explicit finite difference code which
does not require large computer storage. Crack tip singularity is thus han-
dled by swamping the crack region with large number of zones and no known at-
tempt has been made to incorporate crack tip singularities into the computa-
tion. Such simplified model results in enormous computer time which normally
cannot be executed outside of special laboratories. The code can also handle
ductile fracture with relative ease due to the reduced severity in str.ss
singularity.

A. Static Analysis

Historically, the available general purpose finite difference codes were
designed to solve complex dynamic problems and thus no static finite differ-
ence programs for analyzing static fracture problems exist to date. In an
overkill attempt to demonstrate the versatility of such supercodes, Chen [63]
showed that the static stress intensity factor can be obtained from a simple
average of the stress waves set up in the crack-tip region when high artifi-
cial viscosity 1s inserted to damp out the stress waves in the 3-D supercodes.
A similar converge scheme using dynamic relaxation was used by Shmuely et al
[64] to obtain the static SIF in a finite thickness, central crack tension

plate.
28} paxers_ /)
RESULT ~ W/
24} f
l, xe
20} o
16F R/
< 2k /R (AVERAGE )
i = o u(STATIC )y e o TicAL
os} 2 K (STATIC)
04} R
o
' R} 8 L, RP
-0.4}
'y 1 [ [ [ | [ L1
O 2 4 6 8 10 12 14 8
t, Meec

Fig. (11) Dynamic Stress Intensfity Factor in an
Impulse Loaded Plate

B. Dynamic Analysis

For elastic analysis, a simple extrapolation scheme is used to extract
stress intensity factors from the numerically determined crack tip stresses

L -15-
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[63]. Figure 11 shows the dynamic stress intensity factor in a center cracked
plate subjected to sudden tensfon loading. Also shown for comparison 1{s
Baker's solution [65] for a pressurized semi-infinite crack which suddenly
appeared in an infinite plate. Complex fracture problems, such as an I{nter-
nally or externally surface flawed cylinder subjected to sudden pressuriza-
tion has also been solved [66] by the HEMP code. The advantage of such
supercode, however, 1ies in its ability to analyze elastic-plastic dynamic
fracture problems, such as a notched bar subjected to sudden tensile 1loading
[66, 67] and a Charpy V-notched specimen [68]1. In these ductile fracture
analyses, a void growth and coalescence criterion [68] was used to predict the
onset and propagation of a ductile crack.

Special purpose finite difference codes have been used to analyze dynamic
fracture problems but the earlier analyses [70, 71] did not focus on viable
dynamic fracture parameters, primarly due to the undeveloped state of science
in dynamic fracture at that time. Firite difference method was used by Pope-
lar et al [72] to study the dynamic elastic response of an internally cracked
cylinder subjected to impulse loading. The dynamic stress intensity factor
was determined by the energy release rate calculated from the displacements at
the nodes in the vicinity of the propagating crack tip. Shmuely et al [73]
incorporated a moving substructure, as shown in Figure 12 with the proper 1/{r

Fig. (12) Statfonary and Moving Grid

singularity in thefr finite difference program. One half reduction in comput-
ing time 1n static analysis and improved accuracy in energy release rate comp-
utation in dynamic analysis are claimed. As a straightforward application of
a dynamic finite difference shell code, Emery et al [74] studied the axtal
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cracking of a pressurized crack with coupled depressurization calculation.
This analysis was extended to large scale yielding with critical CTOA as a
dynamic fracture criterion [75].

BOUNDARY ELEMENT METHOD

While the boundary element method, which was earlier referred to as the
boundary integral equation method, as a stress analysis tool dates back to
the mid 1960's [76], 1ts application towards solving fracture mechanics prob-
lems was pioneered by Cruse [77, 78] 1n the early 1970's. Boundary equation
method requires only the discretization of the boundary of the structure 1n
contrast to the domain discretization required by finite element method. Thus
boundary equation method 1s not suftable for analyzing elastic-plastic and
elasto-dynamic fracture problems although some recent work [79, 80] suggests
that such use of boundary equation method may not be far. On the other hand,
the reduced system of equation makes it suitable for solving 3-D 1{near
elastic fracture mechanics problems although it ylelds a fully populated,
nonsymmetric system of equations. Also, for an extending crack, boundary
equation method requires only the recomputation of nodes along the crack
surface while finite element method requires complete remeshing around the
original and extended crack. Recent applications of boundary element method
to fracture mechanics has been reviewed by Cruse [8l].

A. 2-D Boundary Element Meythod

Since boundary element method emerged as a numerical tool during the
period of successful applicatton of 2-D fin{te element method to elasto~static
problems in 1inear elastic fracture mechanics, its use in 2-D linear elastic
fracture mechanics did not grow until a special Green's function approach [78,
82] was developed. Util1zing the eleastic Green's function for an infinite
plate with a crack and an interifor point l1oad, the stress intensity factors
can be represented by the following set of path independent integrals
enclosing a crack tip as

- I,11 I,I1
(Kys Kpp) --IBRi (zQ)ui(Q)ds + IB L (zQ)ti(Q)ds (an

where ug (Q) and t1 (Q) refer to the displaCﬁents anhsurface tractions at
boundary point Q. 'Detafls of functional, R1 and L,”", are given in [83].
By taking advantage oif symmetry, Cruse used only séven boundary points to
obtatn KI for a central crack fracture specimen with 6.4 CPU seconds.

Blandford et al [84] eliminated the complex arithmetic tfnvolved in the
above by using traction singular quarter-point boundary elements along each
side of the crack tip. The procedure is the boundary element method counter-
part of Barsoum's finite element method procedure [24] where the midpoint in
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the isoparametric quadratic boundary element is shifted to the quarter point.
This totally numerical procedure eliminates the non-uniqueness of flat crack
model ing [82] and the matrix singularity problem [85]. Atkinson et al [86]

used the path-independent F, and M integrals [87] to determine K in an edge
cracked square torsion bar with a quadratically varying shear mo&Hus.

B. 3-D Boundary Element Method

Since the first applications of boundary element method to 3-D 1l{inear
elastic fracture mechanics in the early 1970's [85], significant inprovements
has been made in the computational algorithm. The use of quadratic fsopara-
metric boundary element elements with quarter point nodes [89] provided
accurate COD's which were used to extract the K, values. Recent solutions to
3-D 1inear elastic fracture mechanics include tﬁe surface flaw solutions in a
tension plate [90] and in a pressurized cylinder [91] by Heliot et al and
crack growth studies of surface flaw by Cruse [92].

AL TERNATING TECHNIQUE

Application of the alternating technique to 3-D 1inear elastic fracture
mechanics was first introduced by Smith et al (93] who solved the semi-circu-
lar surface flaw problem. The procedure was extended to an elliptical crack
by Shah et al [94] who determined K, of an embedded el1iptical crack near a
free surface. Later, Smith et al [;S] extended the solution procedure to K
and KI determination of an elliptical crack. The alternating techniques R
those Hys were relatively inaccurate due to the 1imited curve fitting capa-
bilities of the third order polynomial of the elliptical crack pressure and of
the modeling of the surrounding finite geametry. A major breakthrough in the
latter was made by Browning et al [96] and Kullgren et al [97] who used a 3-D
finite element code to model the surrounding finite geometry. Grandt [98] and
Barrachin et al [99] used this procedure to analyze surface flaw problems and
in particular, the well studied surface flaw at a hole.

Another significant improvement was made with the derivation of the
complete analytical solution [100] for an embedded elliptical crack fn an
infinite solid and subjected to modes I, II and III crack tip deformatfon.
Nishioka et al used twelve terms of a fifth order polynamial of this analy-
tical solution together with a standard 3-D finite element code to analyze
among other, the surface flaw problem [101] and the internally and externally
flawed pressu, 1zed cylinders [102]. Figure 13 shows the reductfon in residual
stress with alternating cycles of fteration for analyzing an externally flawed
pressurized cylinder. Figure 14 shows the resultant stress intensity factor
which 1s compared with those of [103, 104]. The finite element method portion
of this alternating technique used 96 20-noded 1soparametric elements with
1815 degrees of freedom and the total CPU time was about 1000 seconds with a
CYBER 74.
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BENCHMARK SOLUTIONS

In most cases, numerical techniques are validated by comparing the numer-
ical results with known theoretical solutions. By nature, these theoretical
problems in fracture mechanics are simple in geometry and uncomplicated in
loading and thus agreement between the numerical and theoretical solutions are
bound to be good. Theoretical solutions for more realistic fracture problems
do not exist and a consensus between various numerical solutions does not
guarantee their correctness. Lacking other means of comparative study, bench-
mark solutfons which are well defined boundary and initial value problems, are
used to eliminate any ambiguity in problem definition and to assure that all
numerical solutions relate to the same problem. Three such benchmark problems
are discussed in the following.

A. 2-D Elastic-Plastic Crack Problem

In 1975, ASTM Committee E24.01.09 undertook a task to compare numerical
solutions to elastic-plastic plane strain problems. A three-point fracture
toughness test specimen with a uniaxial stress-strain relation of A5338 steel
was analyzed by 10 respondents and the edited and assembled solutions were
presented by Wilson [105]. Figure 15 shows the average J-value, which was

o N
¥ v 1

J, Ibs/inx 10
8

os}

04}
3 o2f
f 0 i 1 i i L 1 ]
3 I 2 3 4 5 6 7 8 10
- P, Ibs x10°3

Fig. (15) J versus Applied Load

Yy

) computed over several integration paths by each investigator, with increasing
3 applied 1oad. While substantial progress has been made in the elastic-plastic
codes In the ensuing six years, the wide differences in the results obtained
fn the late 1970's are stil1l indicative of the lack of consensus for valid 2-D
elastic-plastic codes as well as for basic physfical laws, such as the consti-
> tutive relations under plastic flow under severe strain gradients.

woL s
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B, 3=D LEFM Problem

The surface flaw problem is an outgrowth of a 1976 workshop at Battelle
Columbus Laboratories at which time several 3-D denchmark problems were desig-
nated for numerical analysis. The numerical resulis for the semi-elliptical,
surface flaw plates in tension and bending were subsequently assembled and
edited by McGowan [106]. Figure 16 shows the normalized stress {intensity
factors by six investigators where moderate differences are seen.

22rOSMITH & SORENSEN
O RAJU 8 NEWMAN
O McGOWAN 8 RAYMUND
A HELIOT ET AL

O KOBAYASHI

| MATLURI 8 KATHIRESAN

R

MAGNIFICATION FACTOR, Fy,
>

12

10}

Y] N N )
) 30 60 90

ELLIPTICAL ANGLE, ¢ , DEGREES

Fig. (16) Stress Intensity Factor for a
Surface-Flawed Tension Plate

C. 2-D Dynamic Crack Problem
While no formal benchmark problem in 2-D dynamic fracture was ever desig-

nated for round robin studies, an informal comparative study was made between
the investigators at the Georgia Institute of Technology, Battelle Columbus

. Laboratories and the University of Washington. Dynamic crack propagation in

an A533B steel, dynamic tear test (DTT) specimen was analyzed by generation
calculation using the crack velocity data provided in [107]. Figure 17 shows
the dynamic SIF computed by the three investigators. A1l three elastic
results are in good agreement with each other.
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o CONCLUDING REMARKS
'L The concluding remarks in this paper could have been taken from Reference
;;. [1) since the four cited and the numerous uncited numerfcal techniques {n
- fracture mechanics continue to develop at equal or even higher pace since
Reference [1] was written. Also, the efficiency in numerical techniques
. continues to improve despite the rapid increase in the complexity of the
problems studied.
;' Despfte this explosive rate of development, coordinated efforts to evalu-
) — ate the old as well as new numerical codes through benchmark problems are
- scarce. In order to properly assess the numerous codes available today, an
- fnternational effort in code verification {s badly needed at this time.
t;’.
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